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Abstract: Generalized electron-pair wave functions are used to describe the electronic states involved in a concerted reaction 
process. For symmetry preserving reaction paths, it is shown that primitive symmetry labels for the electron pairs can be used 
to determine the nature of the interaction energy between reactant and product functions and to make an assessment of the 
relative heights of the potential energy barriers that would be encountered along various stereospecific reaction paths. A con­
servation of symmetry principle is introduced for the simplest form of electron-pair function, that based on the canonical va­
lence-bond description. This provides a generalization of the Woodward-Hoffmann rules for the conservation of molecular 
orbital symmetry. Illustrative examples are considered and the limitations of the symmetry conservation principle are dis­
cussed. 

I. Introduction 

An important tool in the study of concerted chemical 
reactions is the symmetry conservation principle. Wood­
ward and Hoffmann2 and others3'4 have used this concept 
in the context of molecular orbital theory to present rules 
for predicting the stereospecific course of several classes of 
organic reactions. The method is easily applied, requires no 
elaborate calculations of energy surfaces, and gives correct 
predictions for many examples.2 Although several alterna­
tive approaches have appeared in the literature,5"14 no one 
has developed a valence-bond formulation with the same 
generality and simplicity as the molecular orbital scheme. 
In this paper, we employ generalized electron-pair wave 
functions to develop a simple valence-bond theory of con­
certed reactions, and to provide an alternative foundation 
for the Woodward-Hoffmann rules. 

The basic idea of the Woodward-Hoffmann method in 
its simplest form is to define molecular orbitals which are 
symmetry adapted with respect to a symmetry operator that 
is present in both reactant and product molecular species 
and bisects the bonds that are formed or broken during the 
reaction. The reactant and product molecular orbital energy 
levels are classified according to symmetry and arranged in 
order of their probable energy values. Levels of like symme­
try in the reactants and products are correlated by connect­
ing them one-to-one starting with the levels of lowest ener­
gy. An aufbau principle is employed to fill the levels with 
the available electrons. A thermal reaction is considered to 
be "symmetry allowed" if all filled molecular energy levels 
of the reactants correlate with corresponding lowest energy 
levels of the products. A thermal reaction is considered to 
be "symmetry forbidden" if all filled levels of the reactants 
do not correlate with the corresponding lowest energy levels 
of the products. To treat photochemical processes, one of 
the electrons in the highest filled level is assumed to be pro­
moted to the next higher level by the photoexcitation. All 
filled and partially filled levels are considered in a corre­
sponding way to determine whether the photochemical 
reaction is "allowed" or "forbidden". 

In the Woodward-Hoffmann scheme, one implicitly visu­
alizes uniquely defined reactant molecular orbitals under­
going transformations until they have formed the corre­
sponding unique molecular orbitals of the products, while 
retaining their symmetry properties throughout. Although 
conceptually simple, the set of orbitals obtained for the in­
termediate species in the reaction, in general, lose their 

orthogonality relationships and their uniqueness. The quali­
tative conclusions based on such a model of the system can­
not therefore be quantitatively verified through calculations 
using the theory directly,15,16 that is, calculations that make 
use of a single-determinantal wave function to represent the 
system over the entire reaction path. Instead a treatment in­
cluding configuration interaction and employing a multide-
terminant wave function must be introduced. 

It has been shown17'18 that for certain reactions (e.g., H2 
+ D2 «=* 2HD) the simplest minimum basis-set nonionic va­
lence-bond wave function provides a good approximation to 
a complete molecular orbital configuration interaction 
treatment valid for reactants, products, and the intermedi­
ate region. This suggests that if the single molecular orbital 
configuration considered in the Woodward-Hoffmann 
scheme makes the dominant contribution to the valence-
bond function, the more general validity of the latter can 
serve to justify the former. Furthermore, it should be possi­
ble to use the dominant configuration argument to develop 
a valence-bond analog of the Woodward-Hoffmann rules. 

In the present paper, we introduce generalized electron-
pair functions and show how primitive symmetry labels can 
be associated with each pair. The primitive symmetry labels 
are utilized to develop simple arguments for determining 
whether or not there is a stabilizing interaction between the 
reactant and product wave functions along symmetry pre­
serving reaction paths. Because of the relation of the gener­
alized electron-pair function to certain configuration inter­
action wave functions of the molecular orbital type, the re­
sulting arguments can be used to obtain a firmer theoretical 
foundation for the Woodward-Hoffmann rules. Further­
more, introduction of the appropriate primitive symmetry 
labels for the simplest electron-pair function (i.e., one com­
posed of canonical valence-bonds for each pair) permits one 
to translate the Woodward-Hoffmann scheme into valence-
bond language. A simple symmetry conservation postulate 
for the valence-bond functions is developed for concerted 
reactions and applied in a manner analogous to the Wood­
ward-Hoffmann procedure. 

Section II presents the generalized electron-pair theory 
and shows how to determine the interaction between reac­
tant and product wave functions. In section III, the simple 
valence-bond formulation is developed. The resulting sym­
metry conservation postulate for concerted reactions is 
given in section IV and applied in section V to a number of 
illustrative reactions that have also been treated by the 
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Woodward-Hoffmann rules. Section VI discusses some of 
the limitations of the symmetry conservation postulate that 
are made clear by the present approach. 

II. Interaction Energy Along Reaction Paths 
In this section a generalized electron-pair function is in­

troduced to describe the bonding in the reactants and prod­
ucts for a reaction to which symmetry arguments can be ap­
plied. Itis shown how primitive symmetry labels can be de­
termined for each electron pair, even when it is expressed as 
a general linear combination of basis orbitals. The complete 
set of primitive symmetry labels for the reactant and prod­
uct functions is then used to find very simple rules for the 
interaction energy along symmetry preserving paths. 

A. Construction of Symmetry-Adapted Wave Functions. 
The generalized electron-pair formalism employed in this 
paper consists of dividing the n electrons of a molecule into 
n/2 pairs of electrons, forming n/2 appropriate two-elec­
tron pair functions, taking an antisymmetrized product of 
these n/2 pair functions to form an n-electron electron-pair 
function, and using a linear combination of different pair 
functions to form the total wave function for the system. A 
convenient method of handling the resulting wave functions 
is in terms of the geminal-product wave function formal­
ism.19^22 Within the context of the latter, the n/2 two-elec­
tron pair functions used to make up the valence-bond struc­
ture can be given the most general configuration-interaction 
form; that is, they can be constructed from all of the atomic 
orbital basis functions of the system while simultaneously 
satisfying the requirements of molecular symmetry. The ad­
vantage of this procedure is that it permits one to retain the 
qualitative valence-bond language and concepts in a general 
formulation that simplifies the problem of evaluating ma­
trix elements. 

The generalized pair wave function M' for an /!-electron 
system is written in terms of an antisymmetrized product of 
the n/2 pair functions or geminals, A, as 

4 ( 1 . . . n) = A(A1(I, 2) A2 (3, 4). . . An/2(n - 1, n)} (1) 

where A is the full n- electron antisymmetrizer, which in­
cludes a normalization factor. The valence-bond description 
of a covalent bond between atoms A and B corresponds to a 
geminal of the form 

A(I, 2) = [a(l)6(2) + 6(l)a(2)] x [singlet spin] (2) 

where a and b denote orbitals on centers A and B, respec­
tively. A much better description of the AB bond can be ob­
tained, however, by extending the orbital expansion in eq 2 
to include more basis functions (e.g., a total of M) and to 
combine these via a configuration-interaction series 

A0(I, 2) = J^QijXi(l)xA2) x [singlet spin] (3) 
a 

where the x are the basis functions and Q is an arbitrary M 
X M matrix (the full antisymmetrizer in eq 1 obviates the 
need for Q to be either symmetric or antisymmetric). Opti­
mal values of the elements of Q can be determined, in prin­
ciple, from a minimization of the total energy of the system 
with respect to the {?,;•; this aspect of the problem has been 
discussed19-22 but is not of concern to the present work. 
Taking xi = a and X2 = b, the valence bond expression in 
eq 2 is obtained by constraining Q to have only two nonzero 
elements; namely, Q\2 = Qn = 1 and the remaining ele­
ments are zero. The more general form in eq 3 allows other 
covalent-type functions and ionic-type functions to contrib­
ute to the geminal wave function. 

A symmetry transformation of the basis orbitals is now 
applied 

X*U) = T1XJ(DTJ1, (4) 
i 

to yield a set of symmetry-adapted orbitals X that conform 
to irreducible representations of the symmetry group of in­
terest for the reaction process under consideration. The 
symmetry transformation T leaves the geminal function in­
variant 

A0(I, 2) = Y, Qu *<(DM2) x [singlet spin] (5) 

when written in terms of the symmetry-adapted orbitals X 
and the transformed matrix Q, 

Q = T-'-Q-T (6) 

No orthogonality has been assumed to exist between the 
various basis functions (other than "accidental" orthogo­
nalities like that between an s and p function located on the 
same center, etc.). Nevertheless, group theory dictates that 
the symmetry transformation T induces an orthogonality 
between functions belonging to different irreducible sym­
metry species of the symmetry group. In particular, with a 
twofold axis or mirror plane of symmetry, T partitions the 
basis set into a symmetric subset Xs and an antisymmetric 
subset XA having the orthogonality property 

ZdT1Xj8U)X^(I) = 0 (7) 

while orbitals within the same symmetry subset do not ac­
quire any new orthogonalities; hence 

ZdT1X1
8U)XZ(I) = IUi1Z. (8) 

/dT1Xft
AU)Xr

A(l) = n.n.z. (9) 

where "n.n.z." is an abbreviation for "not necessarily zero". 
Arranging the orbitals so that all the Xs precede the XA 

gives Q the block structure 

Q / S S I S A N (1Q) 

* VAS I AA/ 

where a nonzero element in a given block produces a term 
in eq 5 having the indicated symmetry species; e.g., from 
block AS, a term is generated of the form XA(1)XS(2). 

In order to obtain a pair function having the symmetry 
SS, the matrix Q is constrained to have the form 

Qss = ( f f§) (ID 

with similar constraints necessary to obtain the pair sym­
metries AA and SA. Within a given symmetry block, a fur­
ther constraint to a single nonzero term (e.g., Qy = 5,y5,i) 
gives the special case of a molecular orbital description of 
the pair. By allowing the entire block to be nonzero, a more 
general configuration-interaction wave function is produced 
for the geminal. Use of the symmetry constrained matrix 
QXY allows the geminal to be identified with the corre­
sponding symmetry labels, AXY, where of the labels X and 
Y each one refers to one of the electrons in the pair. This 
two-term symmetry designation (XY) is the irreducible 
primitive symmetry classification of the geminal; an irre­
ducible composite symmetry label is obtained through use 
of the group multiplication rules, e.g., SS = AA = S and 
SA = AS = A. 
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The irreducible primitive symmetry classification for an 
/!-electron wave function consists of an w-term label, which 
is formed from all of the two-term primitive symmetry clas­
sifications labeling each of the pairs in the system. The 
order of the symbols within the label is immaterial, e.g., 
XYXZ is equivalent to XXYZ. Here again, an irreducible 
composite symmetry label can be obtained through repeat­
ed use of the group multiplication rules. Wave functions 
whose composite classifications belong to different irreduci­
ble symmetry classes have vanishing matrix elements with 
respect to the Hamiltonian. Those in the same irreducible 
class can interact with one another even if they have differ­
ent primitive classifications. 

Of primary interest is an assessment of the effect of the 
primitive symmetry labels on matrix elements of 3C with re­
spect to the total n-electron wave functions for reactant and 
product species, ^ R and ^p, respectively, expressed in the 
geminal-product form of eq 1. We consider the expectation 
value of a AT-particle operator BK 

(QK) = <#E(l...w)|0jf|*p(l...w)> (12) 

For the molecular Hamiltonians of interest here, it is suffi­
cient to examine the cases where BK is a symmetric operator 
with K = 0, l ,or2. 

For K = 0 or 1, eq 12 reduces to a sum of terms contain­
ing factors of the form 

(A,Ww(l, s) |e0 o r e , I A»Y,(1,«)>, (13) 

where the bracket indicates integration over the coordinates 
of electron 1, geminals i,k derive from wave functions R,P, 
respectively, the capital letter superscripts indicate the 
primitive symmetry species relevant to the integration, the 
small letter superscripts indicate primitive symmetries that 
are not relevant to this integration, and s,u are other elec­
tron coordinates. The evaluation of eq 13 proceeds from the 
definition of A in eq 5 and the symmetry induced orthogon­
ality represented by eq 7. For the twofold axis and mirror 
plane symmetries of importance to this work, the conse­
quence is that W and Y must be identical in order for the 
integral to be nonzero. To obtain the contribution to (BQ) or 
<0i) the factor in eq 13 is of course multiplied by an appro­
priate number of overlap integrals (#o) to account for the 
integration over the other n — 1 electrons. Each of these in­
tegrations also requires that the primitive symmetry label 
from ^ R for the electron being integrated be equal to that 
from ^p. Thus, the only possible nonzero terms in eq 12 for 
the operators do or 8\ arise from the situation where ^ R and 
^ P have an identical list of primitive symmetry labels; the 
order of the labels does not matter. 

For K = 2, eq 12 reduces to a sum of terms containing 
factors of the following type 

<(A/x(l,2)|ea |A*YZ(l,2)>i>2 (14) 

«AiWX(l,2) I e21 A*Yy(l, u)A,Zz(2,w)>,>2 (15) 
and 

«A A l , s)A;Xx(2, t)\et\ A*Y,(1, K)AI Z ' ( 2 , i>)>,>2 (16) 

The symmetry induced orthogonality of eq 7 causes these 
two-electron integrals to vanish unless the product of sym­
metry species W-X-Y-Z contains a totally symmetric com­
ponent of the symmetry group. In terms of the twofold axis 
or mirror plane symmetries, with the multiplication rules 
SS = AA = S and SA = A, these integrals are nonzero only 
if WX-YZ is of the form SS-SS, AA-AA, SA-SA, or 
SS-AA; that is, they must be identical or differ by two la­

bels. As in the Bo and B\ case, the factors in eq 14-16 are 
multiplied by an appropriate number of overlap terms (BQ) 
corresponding to integration over the remaining n — 2 elec­
trons. Each of the latter requires that the primitive symme­
try label for a given electron be the same from both ^ R and 
Vp. Thus, eq 12 for B2 has nonzero contributions only if ^ R 
and 1^P have either lists of identical primitive symmetry la­
bels or these lists differ by exactly two labels. 

The preceding discussion can now be summarized for the 
matrix elements of the K-particle operator 0K 

ieK) = ^f8[N1
11N2

11
 ...]\0K\ *p[N t

P N* ...]> (17) 

where the number of primitive symbols of type /' appearing 
in the primitive symmetry classification of wave function 
^R is given by A7,1*. Defining ARP to be the discordance in 
primitive symmetry between the two wave functions 

ARP = V2Z\Ni* - NiF\ (18) 
i 

the following relationships exist by virtue of the construc­
tion of the symmetry adapted geminal structures. 

<e0) = 0 unless ARP = 0 (19) 

(et> = 0 unless ARP = 0 (20) 

(e2) = 0 unless ARP = 0 or 2 (21) 

These results are general and hold for all irreducible repre­
sentations of each point group, including multidimensional 
representations. In the latter case, each component (e.g., Ex 
and Ey) of a multidimensional representation is a distinct 
entity and must be separately considered in the determina­
tion of ARP for use in eq 19-21. 

B. Interaction Energy Along Symmetry Conserving Paths. 
We assume that the wave function corresponding to a rep­
resentative reaction can be expressed as 

*VB = CR*E + C P * P (22) 

where both contributing structures, ^ R valid for reactants 
and ^p valid for products, are fully antisymmetrized, n-
electron wave functions constructed from symmetry-adapt­
ed geminals as described in eq 1-11, and CR and Cy are lin­
ear coefficients determined by the variation principle; the 
values of the coefficients vary as a function of the distance 
along the appropriate chosen "reaction coordinate". In Fig­
ure 1, we show a schematic diagram representing the ener­
gies corresponding to ^ R and ^p along the reaction coordi­
nate; that is 

a = £ E = < * R N * R > / ( * R | * R > (23) 

y = -Bp = <*P|3C|*p>/<*p|*p> (24) 

where K is the Hamiltonian for the system. Solution of the 
eigenvalue equation associated with *VB in eq 22 gives the 
total energy of the system as 

EVB = Iy2(Q! + y) - PS ± [ayS* - $S(a + y) + 

/32 + Vi(a - y)2]1/2}(l - S2)-1 (25) 

where the interaction or "exchange" energy, /3, is defined as 

/3= ( * R | 3 C | * P > [ ( * B | * R X * P | * P ) ] - 1 / 2 (26) 

and the overlap integral 5 has the form 

S = <*Rj*p>[<*E|*R><*pl*P>r1/2 (27) 
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REACTANTS TRANSITION PRODUCTS 

REACTION COORDINATE 

Figure 1. Potential energy as a function of reaction coordinate for a hy­
pothetical system. See text foran explanation of the various curves. 

The values of the quantities a, 7, /3, and S vary as a func­
tion of position along the chosen reaction path. 

In the case that 1^R and 1^p do not have the same com­
posite symmetry, the overlap integral vanishes identically 
on symmetry grounds. Correspondingly, since the Hamilto-
nian is a totally symmetric operator, the interaction integral 
/3 vanishes when ^ R and ^p belong to different irreducible 
representations of the molecular symmetry group. Thus, for 
wave functions having different composite symmetry, there 
is no configurational mixing and no concomitant energy 
lowering along the reaction path. In this case, eq 25 reduces 
to the expression 

£VB = a (28) 

along the entire reaction path, which in terms of Figure 1 
implies an endothermic path toward an excited state. Of 
course, deviations from the symmetry preserving path can 
occur and result in "crossings" from the surface with ener­
gy a, corresponding to 1^R, to the surface with energy 7, 
corresponding to Vp. 

In order to achieve configurational mixing and energy 
lowering along a symmetry preserving reaction path, the 
product function ^ P must have composite symmetry that is 
the same as that of the reactant function ^ R . If one has two 
alternative paths, both corresponding to component struc­
tures of matching composite symmetries, it is necessary to 
determine along which of the two the lower energy barrier 
will be encountered. The most frequently considered exam­
ples are those in which one path preserves a mirror plane 
and the other path a twofold axis of symmetry. The symme­
try conservation rules permit one to determine which is the 
lower energy path on the basis of the concordance of the 
primitive symmetry labels, summarized in eq 19-21. 

For a situation where the primitive symmetry is not con­
served and ARP = 2, the overlap integral S vanishes by eq 
19. The interaction energy f) contains no contributions from 
the one-electron operators in the Hamiltonian because of eq 
20 and consists only of contributions from the two-electron 
repulsion terms. In this case, eq 25 reduces to 

£VB = V2(Ci + y) ± [V4(O! - yf + &y* (29) 

which yields an energy lowering along the reaction path, as 
shown schematically by the dotted curves in Figure 1. 

When the primitive symmetry is conserved, ARP = O, the 
overlap integral S is nonzero and the interaction energy 
consists of both one-electron and two-electron terms. The 
energy lowering is given by eq 25 and is seen to be made up 
of two contributions. It arises both from the strength of the 
interaction energy term /3 as well as the influence of overlap 
S. The dashed curves in Figure 1 represent this case. 

It is convenient to choose a particular point along the 
reaction paths where the energy expressions simplify in 

order to gain a better understanding of these relationships. 
In particular, there is always some point along the reaction 
coordinate where a = 7, that is, where the energies corre­
sponding to ^ R and \I>p are equal. If the composite symme­
try is conserved but the primitive symmetry is not, eq 29 is 
applicable and reduces at this point to 

£|a=r = a ± /3' (30) 

where the prime on Q denotes contributions to the interac­
tion .energy arising only from the two-electron operators. 
When both composite and primitive symmetries are con­
served, the full energy expression given in eq 25 is appropri­
ate; at the equivalence point on the reaction path, the ener­
gy becomes 

E\a,r = (a± H)/(l ± S) (31) 

In a case where both /3 and S are positive, the positive signs 
in eq 30 and 31 give the higher energy curves in Figure 1 
while the negative signs give the lower energy curves. For a 
nominal value for 5 of 0.2, the influence of overlap in eq 31, 
relative to eq 30, is on the order of 20% of the total energy. 

The customary but perhaps too restrictive terminology, 
"allowed" and "forbidden", applied to two alternative reac­
tive modes of a system, implies only that in the "allowed" 
case the energy barrier encountered along the reaction coor­
dinate is expected to be significantly lower than in the "for-. 
bidden" case.23'24 As we have shown, the lower barrier is a 
result of the greater interaction energy that can occur when 
the principal reactant and product structures have concord­
ant primitive symmetry classifications. Thus, for example, 
if a path along which a twofold axis was preserved led to 
concordance for the primitive symmetry labels while that 
involving a mirror symmetry plane did not, the former 
would be expected to have a lower barrier than the latter. 

C. Further Energy Considerations. The energy profile 
along a reaction path has been discussed in relation to the 
concordance or discordance of the primitive symmetry clas­
sification of the reactant and the product wave functions. 
The discussion pertained specifically to the case where the 
reactant and product system could both be described by a 
single symmetry-adapted electron-pair wave function. In 
particular, eq 19-21 were derived on the assumption that 
the component pair functions were strict symmetry eigen-
functions. For certain systems, electron-pair functions cor­
responding to several resonance structures might be re­
quired to provide an adequate description of the reactant or 
the product state. Moreover, as we show in the following 
section, pure covalent valence-bond wave functions may not 
by themselves satisfy the symmetry requirements, so that 
correction terms may have to be added to the wave function 
to obtain exact symmetry eigenfunctions. The present sec­
tion presents an analysis of these more complex situations. 

The /i-electron reactant wave function, ^ R , is written as 

* R = ^ 1 * , + v42*2 + . . . (32) 

where each of the contributing structures, #j, is taken to be 
a fully-antisymmetrized, n-electron symmetry-adapted 
electron-pair wave function and the A's are linear coeffi­
cients. We limit the expansion in eq 32 to two terms since 
the generalization required for additional terms is straight­
forward. 

From eq 23 and 32, a set of secular equations is derived. 
If the coefficients in eq 32 are determined by a variational 
procedure, the energy a of the reactant function ^ R (eq 23) 
is given by 
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a = (V2(S11 + £22) - £1 2s l 2 ± [EnEnSn* -

EnSn[En + En) + En* + V4(En - £„)*]"*} x 

(1 - S12
2)"' (33) 

where 

Et, = <*«M*i>[<*, !*,)<*, I*,)]"1 '* ( 3 4 ) 

St1 = ( s , I sy)[(s< I $,)<$ ̂  I ^ ) ] " 1 /2 ( 3 5 ) 

The coefficients ,4i and ^ 2 have the relative values (IyI2I < 
Mil) 

A2 = ^ ( ( S 1 U 1 ) A * , ! * , ) ) 1 ' * (36) 

with 

r = (aSw - Ei2)/(E22 - as22) (37) 

Evaluation of the resonance interaction E\ 2 and the over­
lap S12 proceeds by use of eq 17-21. Since $1 and $2 gen­
erally have the same composite symmetry, only the primi­
tive symmetry classifications can be different; in that case, 
we have An = 2, and S12 vanishes while £12 consists only 
of two-electron repulsion terms. If $1 and $2 have the same 
primitive classification, A12 = 0, S\2 is nonvanishing, and 
£12 contains both one-electron and two-electron contribu­
tions. 

In similar fashion, the /!-electron product wave function, 
1Pp, is written 

* P = B1S3 + B2S4 (38) 

where S3 and S4 are appropriate structures for the product 
state. Solution of the secular equations arising from eq 24 
and 38 gives the eigenvalues y 

Y = (V2(£33 + Eu) - E34S34 ± [EnEuSsi2 -

EME33 + Eii) + EU + %(£33 ~ Eiif}^ X 

(1 - S34
2)"1 (39) 

and relative coefficients ((^2) < |#i|) 

B2 = AB1C(S3Is3)AsJ*^)172 (40) 
with 

p = (yS3i - EU)/(EU - ySu) (41) 

and eq 34 and 35 defining the remaining quantities. 
The reactant and product wave functions described by eq 

32 and 38, respectively, must be combined as indicated in 
eq 22 to form the total wave function, >^VB, corresponding 
to the total reaction system. The total energy, £VB, along 
the reaction coordinate, is still given by eq 25 but with a 
and y now defined by eq 33 and 39, respectively. Moreover, 
the interaction energy /?, defined in eq 26, is now given by 

& = (S13 + rS 2 3 + pEu + rpE2l)/D (42) 
where 

D = (1 + 2rS12 + r2)1 / 2( l + 2pSu + ^ 2 ) 1 ' 2 (43) 

The overlap integral S, defined in eq 27, is 

S = (S13 + rS2S + pSu + rpS2i)/D (44) 

Again, evaluation of the individual terms, Ey and Sy, is 
performed through use of eq 17-21. 

As in the simpler case considered in section IIB, both /3 
and S can be responsible for energy lowerings along a reac­
tion path, with eq 42 and 44 specifying the manner in which 

the secondary structures S2 and $4 enter the energy expres­
sions. However, when r and p are very small, the symmetry 
properties of the principal structures Si and S3 determine 
the behavior of /3 and S through the terms S1 3 and S13. In 
the case where the secondary structures are more heavily 
weighted, the concordance or discordance of symmetry clas­
sifications must be assessed for principal-principal, princi­
pal-secondary and secondary-secondary interactions in 
order to determine the nature of /3 and S. It is evident that 
for such reactions the symmetry rules may not have the 
simple form assumed in most qualitative discussions. 

HI. Simple Valence-Bond Formulation 
In this and the following sections, we wish to utilize the 

general arguments developed for electron-pair functions to 
formulate primitive symmetry labels and a symmetry con­
servation postulate for a simple valence-bond representation 
of the reacting system. We construct the valence-bond wave 
function from an antisymmetrized product of two-electron 
functions, each describing a pair of electrons in the system. 
These valence-bond pairs are taken to be spin eigenfunc-
tions and therefore have singlet or triplet spin functions as­
sociated with them. In addition, the bond pairs are con­
structed so as to be adapted in an approximate way to the 
symmetry element under consideration. 

As pointed out in the introduction, the symmetry labels 
for the electron-pair functions are chosen by examination of 
the molecular orbital two-electron wave function that 
makes the dominant contribution. The singlet valence-bond 
function,' (TAB, is assumed to be composed predominantly of 
the molecular orbital function (a + b)2, where a and b rep­
resent functions located at centers A and B, respectively, 
and to a lesser extent of the function (a - b)2. The symme­
try label used for the * DAB function is, thus, that associated 
with (a + b)2. The triplet pair is exactly equivalent to the 
molecular orbital description in which one electron occupies 
(a + b) and the other {a - b). The same molecular orbital 
arrangement but with a singlet spin function describes the 
ionic pair a2 — b2. The remaining singlet pair, which is pri­
marily ionic, has a dominant contribution from the doubly 
occupied (a — b) molecular orbital. This device of combin­
ing molecular orbital and valence bond concepts to generate 
the required two-electron symmetry labels enables the latter 
to be classified even with respect to higher symmetry groups 
such as Civ, Dnh, etc. The resulting prescriptions for the 
symmetry classification of bond pairs are given in Figures 
2-4. In the case of the bond type designated 1TABJbCD and 
1^ABiCD. neither the AB nor CD bonds are individually 
symmetry adapted to the symmetry elements of the system. 
Thus, the appropriate linear combinations are formed and 
serve as the symmetry adapted bond functions. The triplet 
pair function in Figure 3 has the two electrons with parallel 
spins located on different atoms. The ionic structures in 
Figure 4 have the two electrons with paired spins located on 
the same atom. 

The symmetry classification for an n- electron valence-
bond structure consists of n symbols which form a primitive 
representation of the total wave function under the symme­
try operation in question. The n-term label is formed from 
each of the two-term primitive symmetry classifications la­
beling each of the pairs in the system. The order of the sym­
bols within the label is immaterial: AASA is equivalent to 
SAAA. A composite symmetry label can be obtained 
through repeated use of the multiplication rules, SS = AA 
= S and SA = AS = A. As already discussed in section II, 
structures belonging to different composite irreducible sym­
metry classes have vanishing matrix elements with respect 
to the Hamiltonian. Those in the same composite irreduci­
ble class interact with one another even if they have differ-
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SYMMETRY CLASSIFICATION 

TWO-FOLD 
AXIS 

AA 

SS 

SS 

AA 

Figure 2. Symmetry classifications of singlet covalent bonds. 

SYMMETRY CLASSIFICATION 

MIRROR TWO-FOLD 
PLANE AXIS 

SA SA 

Figure 3. Symmetry classification of triplet pair. 

SYMMETRY CLASSIFICATION 
MIRROR TWO-FOLD 

PLANE AXIS 

7TA2 _ B2 

1 T A 2 + B= 

SA 

AA 

SA 

SS 

Figure 4. Symmetry classification of singlet ionic pairs. 

ent primitive classifications. 
To generalize the relation between the valence-bond and 

the molecular-orbital formulation, we can view a valence-
bond structure as a constrained type of configuration inter­
action wave function where the linear coefficients of the 
molecular orbital determinants are fixed by the values of 
certain overlap integrals.17'18 This procedure allows for con­
venient comparisons between valence-bond and molecular-
orbital descriptions of a given state and between valence-
bond wave functions corresponding to different states. As 
an example, we examine the excited triplet and singlet va­
lence-bond wave functions of cyclobutene 

VB (triplet) = [1CTA13][
3IrBc] 

VB(singlet) = [ V ^ f 1 ^ . ^ ] 

(45) 

(46) 

where the labeling of the bond functions corresponds to I. 

lence-bond structures is SSAS with respect to either a two­
fold axis or a mirror plane, as can be seen from Figures 2-4. 
Only four electrons are explicitly considered in eq 45 and 46 
since the remaining electrons of the cyclobutene system are 
assumed not to be direct participants in the ring-open chain 
isomerization. 

The unnormalized molecular orbitals x for cyclobutene 
are 

m,S) = CTA + 
m,S) = TTB + 

Xi(2f,S; 
X2(2f,A: 
Xs(2f,S; m ,A) 

CTD 

TTc 

7TB — 7Tc 

(47) 

The primitive symmetry classification of these principal va-

X4(2f,A; m,A) = CTA - CTD 

where the molecular orbital symmetries with respect to a 
twofold axis (2f) and mirror plane (m) are given in paren­
theses, and the letter subscripts indicate the atomic center 
on which the respective <x or -K orbital is located. By substi­
tuting these relations into eq 45 and 46, the valence-bond 
structures can be expressed in terms of four-electron molec­
ular orbital determinants 

VB(triplet) = (1 + S1) 11123 | - (1 - S0)144231 (48) 

VB(singlet) = (1 + S0)(111231 - i l l231) -

(1 - S0)(14423 I - 14423)) (49) 

where Sc is the overlap integral between the a orbitals on 
centers A and D, the bar represents /3 spin, and normaliza­
tion constants have been suppressed. Thus, the two valence-
bond structures in eq 45 and 46 are composed of the same 
two determinantal configurations, 1123 and 4423, but dif­
fer in the coupling of the electron spins. 

With respect to either a twofold axis or mirror plane, the 
molecular orbital state symmetry4 corresponding to 1123 
and 4423 is SSAS and AASA, respectively. Since Sa is pos­
itive in eq 48 and 49, the leading term of the valence bond 
series is 1123. The primitive symmetry label of SSAS as­
signed to the valence-bond pair functions of eq 45 and 46 is 
therefore an "approximate" valence-bond symmetry be­
cause it corresponds only to the symmetry of the leading 
term of the valence-bond expression of eq 48 and 49. The 
"exact" valence bond symmetry consists predominantly of 
SSAS and secondarily of AASA, with the relative impor­
tance of these two symmetries being governed by the coeffi­
cients 1 ± S0- in eq 48 and 49. Alternatively, additional 
structures could be added to the canonical covalent struc­
tures of eq 45 and 46 so as to obtain an augmented valence-
bond wave function with SSAS as the "exact" symmetry. 

If, instead of the canonical valence-bond scheme, the 
more general electron-pair wave functions described in sec­
tion HA were used, then the basis set of eq 47 could be ex­
panded to include additional orbitals. This would allow fur­
ther determinants of both SSAS and AASA symmetries to 
be employed in a configuration interaction series of the 
form of eq 48 and 49; only now the coefficients would not 
be fixed by the values of an overlap integral but would be 
determined variationally as described in section HC. The 
leading term of such a more general scheme would still be 
the 1123 determinant, and the SSAS symmetry of the latter 
might still be expected to exert a dominant influence on 
symmetry-related energy considerations. 

In the Woodward-Hoffmann molecular orbital scheme, 
the photochemical isomerization of cyclobutene to butadi­
ene is analyzed by means of the configuration 1123 without 
considering spin multiplicity. For both the triplet and sin­
glet states of interest here, the molecular orbital single de­
terminant 1123 is the leading term of the valence bond se­
ries, which in turn is expected to be a good approximation 
to a variationally determined configuration interaction 
wave function. The success of the Woodward-Hoffmann 
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rules can be ascribed in part to this relation of the simple 
molecular orbital description of a system to more exact 
wave functions and to the decisive role played by the primi­
tive symmetry properties of the principal component of a 
wave function. 

IV. Symmetry Conservation Postulate 

As we have seen in section II, if the primitive symmetry 
classification of the principal structure of a molecular sys­
tem is conserved throughout the course of a concerted reac­
tion, the energy barrier is expected to be lower than if it is 
not. We, therefore, make the following symmetry conserva­
tion postulate: a concerted reaction is "allowed" if the prim­
itive symmetry classification of the principal reactant struc­
ture ^ R is the same as that of the principal product struc­
ture ^p; it is "forbidden" if the primitive symmetry classifi­
cations of these two structures are not the same and differ 
by exactly two labels. 

The symmetry conservation postulate applies to concert­
ed reactions in which the symmetry operator of interest bi­
sects the bonds which are formed or those which are broken 
during the process. The terms "allowed" and "forbidden" 
are to be interpreted23"24 as indicating that a fairly low or a 
fairly high activation barrier exists. Consequently, an al­
lowed reaction is much more likely to proceed under ordi­
nary thermal conditions than a forbidden one. 

It is evident that to apply the symmetry postulates appro­
priate wave functions must be chosen as the principal struc­
tures for the reactant and product molecular species. In the 
case of thermal reactions, the ground state species are to be 
described. For photochemical processes, one must be care­
ful to distinguish which excited states are involved. At any 
point along the reaction path, the total wave function for 
the reacting system consists of a linear combination of a 
principal structure and possibly several other lesser impor­
tant contributing structures, all having the same composite 
symmetry. However, it will be assumed that usually only 
the principal structures need to be considered. As the reac­
tion proceeds, the principal reactant structure, which domi­
nates the wave function at the beginning of the process, di­
minishes in importance in accord with the variation princi­
ple while the principal product structure gains in impor­
tance until it dominates the total wave function at the end 
of the process. It is the primitive symmetry classification of 
these principal structures, derived from the approximate 
primitive pair function symmetries, indicated in Figures 
2-4, that must be conserved for allowed processes. In cer­
tain situations, secondary energy effects must be consid­
ered, as discussed in sections HC and III. 

V. Examples 

To illustrate the symmetry conservation rules, we give 
some examples in this section. 

A. Cyclobutene-Butadiene Isomerization.2-10'14'15 The 
cyclobutene-butadiene isomerization25-41 provides a classic 
system for the application of the symmetry conservation 
rule. The principal valence-bond structure of the ground 
state of cyclobutene consists of a a bond between AD and a 
ir bond between BC, as already indicated in I; the wave 
function for the other electron pairs in the molecule is as­
sumed to remain unchanged during the reaction and can 
therefore be ignored. The principal valence-bond structure 
of the butadiene ground state consists of -K bonds between 
AB and CD, indicated in II. 

A 

(in 

The question to be answered is whether a symmetry con­
serving path preserving a twofold axis of symmetry or a 
mirror plane of symmetry, both of which are present in 
reactant and product species, leads to a lower energy bar­
rier for the ring-opening isomerization. (The trace of the 
symmetry operators in the plane of the molecules is indicat­
ed by the dotted lines in I and II.) To answer the question, 
the valence-bond structures must be classified according to 
the two symmetry elements. The cyclobutene structure is 
written 

^cyclobutene - [ 1 O - A D ] [ 1 T T B C ] ( 5 O) 

and from Figure 2, it has the primitive symmetry classifica­
tions 

twofold axis—SSAA (51) 

mirror plane—SSSS (52) 

As the reaction proceeds, the a orbitals on centers A and D 
are regarded as rotating in either a conrotatory or disrotato-
ry fashion such that the symmetry of the twofold axis or 
mirror plane is conserved, respectively. Changes in orbital 
hybridization would also be expected to occur. Since the 
theory in its present form does not impose any orthogonality 
constraints on the form of the orbitals making up the bond 
pairs, the wave function in eq 50 remains a bona fide struc­
ture throughout. 

The butadiene structure is written in terms of the sym­
metry adapted pair functions as 

and has the primitive symmetry classifications 

twofold axis—AASS (54) 
mirror plane—SSAA (55) 

Here again, the orbitals on centers A and D are assumed to 
rotate and distort in the appropriate conrotatory or disrota-
tory fashion as the reaction proceeds but the structure and 
its symmetry classification remain valid. 

With the twofold axis, the symmetry, SSAA, of the prin­
cipal structure is conserved during the reaction from reac-
tants to products and this conrotatory process is termed "al­
lowed". With the mirror plane, the symmetry classification 
is not conserved and thus the disrotatory mode of reaction is 
termed "forbidden". This prediction of a conrotatory isom­
erization is valid for thermal reactions and photochemical 
processes involving electronic excitations that are quenched 
to vibrational levels of the electronic ground state before 
isomerization since in each case the electronic ground state 
wave function behavior would be appropriate. This conrota­
tory ring opening has been observed experimentally41 and 
agrees with the conclusions of the molecular orbital 
schemes.2"10'14'15 

The usual photochemical reaction proceeds along a reac­
tion path lying on a potential energy surface corresponding 
to excited state species. The lowest energy excited state of 
cyclobutene is expected to have the triplet structure 

^cyclobutene = [ 1 CTAD][ 3 TTBC] ( 5 6 ) 

which has the symmetry classification SSSA with respect to 
either the twofold axis or mirror plane. Though the exact 
energy is not known, this state has been estimated to lie 87 
kcal/mol above ground state cyclobutene,423 and hence 
about 100-105 kcal/mol above the ground state butadiene 
energy. The corresponding localized description of the trip­
let excited state wave function of butadiene is 

* b u u d i e n e = [ ^ B c][37TAD ] ( 5 7 ) 
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and has the primitive symmetry classifications 

twofold axis—AASA (58) 
mirror plane—SSSA (59) 

Its energy lies about 60 kcal/mol above the ground state 
butadiene singlet.43'44 In order to conserve the symmetry 
classification SSSA, a disrotatory opening has to be fol­
lowed. 

A further excited state of butadiene is known44 to lie 
107-124 kcal/mol above the ground state singlet. This cor­
responds to the ionic singlet structure 

^butadiene = [ W ] [ W - D 2 ] (60) 

having the primitive classifications 

twofold axis—AASA (61) 
mirror plane—SSSA (62) 

Since this structure has an antisymmetric composite repre­
sentation, it would be noninteracting with the ground state. 
A corresponding excited singlet state for cyclobutene is rep­
resented by the structure 

^cyclobutene = [ 1 CTAD][ 1 W B2-C2] ( 6 3 ) 

which has the primitive classification SSSA for both sym­
metry operators. Therefore, these excited singlet states 
would be correlated in a disrotatory fashion. 

The predictions regarding the thermal conrotatory and 
photochemical disrotatory nature of these reactions appear 
to be in agreement with the work of Srinivasan41 on the 
isomerization of m-3,4-dimethylcyclobutene. The fact that 
the butadiene triplet lies 45 kcal/mol lower than the cyclo­
butene triplet42-44 is consistent with the observation45 that 
the photochemical ring closure does not proceed via triplet 
state intermediates. The present analysis would indicate 
that the ring closure could proceed through excited singlet 
states with conservation of symmetry, spin angular momen­
tum, and energy if the excited singlet of cyclobutene is as­
sumed to lie only slightly higher than the excited cyclobu­
tene triplet. However, if the excited cyclobutene singlet does 
lie considerably higher,41 the ring closure would probably 
involve a crossing from the singlet butadiene to triplet cy­
clobutene during the course of reaction. 

B. Other Ring-Chain Isomerizations.2'9'10 As a second ex­
ample, we consider the hexatriene-cyclohexadiene isomer­
ization.46"58 There are six electrons to account for, in this 
case, since all the remaining electrons keep their pairing re­
lationships, and thus, their symmetry characteristics remain 
invariant throughout the process. 

The reactant hexatriene is labelled as in III. The princi-

A \ 

(III) 

pal ground state structure can be written with reference to 
Figure 2 as 

^hexatriene = [ 1 T T A B + E F ] [ 1 T T A B - E F ] [ 1 T T C D ] ( 6 4 ) 

and has the primitive symmetry classifications 

twofold axis—AASSAA (65) 
mirror plane—SSAASS (66) 

The product molecule contains the new a bond between 
atoms A and F, indicated in IV. The corresponding princi-

A * 

(IV) 

pal ground state wave function 

* cyclohexadiene — I 0"AFJ [ TTgC+D E][1TTBC-DE] ( 6 7 ) 

has the primitive symmetry classifications 

twofold axis—SSAASS (68) 
mirror plane—SSSSAA (69) 

Symmetry can be conserved only through preservation of 
the mirror plane, and the reaction path is termed disrotato­
ry. 

The first excited triplet state, which could be involved in 
certain photolytic isomerizations, has the structure 

^hexatriene = [ ^ B C + D E J ^ T T B C - D E H ^ A F ] ( 7 0 ) 

and has the symmetry classification SSSAAA with respect 
to both a twofold axis and a mirror plane of symmetry. The 
product molecule has the description 

*cyclohexadiene = [ W ] [ 3 T T B E ] [ 1 T T C D ] ^ 

with the primitive symmetry classifications 

twofold axis—SSSAAA (72) 
mirror plane—SSSASS (73) 

The excited state reaction from triplet hexatriene to triplet 
cyclohexadiene would have an "allowed" path that con­
serves a twofold axis of symmetry. The next lowest singlet 
excited state also exhibits this conrotatory behavior. 

The octatetraene to cyclooctatriene isomerization59,60 

and higher ring-chain homologs can each be treated in the 
same general fashion as above. Correlation of these results 
leads to the An and An + 2 rules:2'5,6 namely, (a) if the re­
lated ring and chain molecules have An and An + 2 TT elec­
trons, respectively, the thermal isomerization proceeds in a 
disrotatory fashion and photochemical isomerization pro­
ceeds in a conrotatory manner, and (b) if the ring and chain 
isomers have respectively An — 2 and An IT electrons, ther­
mal conrotatory and photolytic disrotatory reactions are ex­
pected. 

C. Diels-Alder Reaction.2'6'8'11 The Diels-Alder [4 + 2] 
cycloaddition of butadiene to ethylene giving cyclohexene, 
which is shown in V, is an example of a symmetry allowed 

it * v - •& 
\ F \ F v 

(V) 

process. The principal structures of the reactants are 

*reactantt = [1TrAB+CD][1TTAB-CD]-[1TTEF] ( 7 4 ) 

with the primitive symmetry classifications 
twofold axis—AASSAA (75) 
mirror plane—SSAASS (76) 

The product wave function is of the form 

^product = [ 1 C T A F + D E ] [ 1 O A F - D E ] [ 1 T T B C ] ( 7 7 ) 

and has the primitive symmetry classifications 
twofold axis—SSAAAA (78) 
mirror plane—SSAASS (79) 

The reaction is seen to be symmetry allowed with respect to 
both of the symmetry elements present. 
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D. Allowed Group Transfer Reaction.2 A more complex 
example is provided by the group transfer reaction depicted 
in VI with Ri = R2. The reactant structure and its symme-

J \ V + \ - B [ ̂  F + ^ R2 
A -̂ \ Jf A \ R ' \ > r 

(Vl) 

try classifications are written as 

* reactant = [ 1 S A B 1 + TO2][
1OAB1-FR2]I

1 ^BC+Dsi X 

[1TTBC-DE]-[1TfGH] (80) 

twofold axis—SSAAAASSAA (81) 
mirror plane—SSAASSAASS (82) 

The product species have the wave function and symmetry 
characteristics 

* product = [ 1 T A B + E F ] [ 1 T T A B - E F ] [ 1 T T C D ] ' [ V H E 1 + G R 2 ] X 

[1CTHR1-GR2] ( 8 3 ) 

twofold axis—AASSAASSAA (84) 
mirror plane—SSAASSSSAA (85) 

Thus, the transfer is a symmetry allowed process. 
E. Forbidden Group Transfer Reaction.2 An example of a 

symmetry forbidden reaction is provided by the group 
transfer reaction given in VII. The reactant molecules have 

\ C x 

AR2 + x* — L \ + ^ 
Rl \ F \ \ F v 

(VII) 

the description 

^reactant = [1CAR + DR'2][1CTAH1-DR2][1TrBc] ,[ TTE F ] ( 8 6 ) 

and the primitive symmetry classifications 

twofold axis—SSAAAAAA (87) 
mirror plane—SSAASSSS (88) 

The product molecules have the structure and primitive 
symmetry classifications 

* product = [ 1 T T A B * C D ] [ 1 T , ' A B - C D ] - [ 1 C F R 1 + E R 2 ] [ (7FR1-ER2] 

(89) 
twofold axis—AASSSSAA (90) 

mirror plane—SSAASSAA (91) 
Neither symmetry classification is conserved during this 
process and a high thermal activation barrier is expected. 

VI. Limitations of Symmetry Rules 
The principal concern in the present work has been the 

discussion of symmetry conservation of concerted reactions 
in the framework of generalized electron pair functions. 
The salient feature of the development has been the intro­
duction of a primitive symmetry classification which per­
mits one to compare the barrier heights expected for two 
possible symmetry-preserving paths along which a reaction 
might proceed. Symmetry conservation rules are then ob­
tained by assuming that the path corresponding to the lower 
energy barrier is the more probable one. In such a qualita­
tive comparison the assessment of barrier heights is a rela­
tive assessment; a numerical evaluation of the expression in 

eq 25 for the transition state species would be necessary to 
obtain an gbsolute value of a given barrier height. 

Although the symmetry rules have had a remarkable suc­
cess, there are certain situations where a breakdown could 
occur in the simple arguments biased on the conservation of 
primitive symmetry between principal valence-bond struc­
tures.61"65 In particular, if a multistructure wave function is 
required to achieve an adequate description of the reacting 
system as described in section HC, as assessment of relative 
barrier heights would have to include the effects qf interac­
tions arising from secondary valence-bond structures. Fur­
ther, if there exist nonsymmetry preserving paths having 
low enough potential energy barriers to make them impor­
tant to the reaction system, these paths would need to be 
considered. Finally, if dynamical effects are important or if 
the system encounters strained geometries or hindered rota­
tion along a reaction path, these could also lead to a break­
down of the rules. For such situations, the rules could be re­
fined or supplemented by calculations within the present 
general framework by including the relevant interactions in 
the Hamiltonian or by considering secondary symmetry 
components of the canonical valence-bond wave function as 
discussed in section III and evaluating their effect on the 
energy expressions given in section II. 
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Recent investigations of luminescence quenching of ex­
cited state organic1 and inorganic2 molecules, and of photo­
sensitized redox decompositions,3 have led to the realization 
that electron transfer mechanisms can play a dominant role 
in these photochemical processes. In this report we present 
evidence for excited state electron transfer in bridged binu­
clear ions of the type RoLCu1 (Ro = (NH3)SCo111 moiety, 
L = - 0 2 C ( C H 2 ) „ C H = C H R or N H 2 ( C H 2 ) ^ C H = 
CH 2 ) , 4 arising from irradiation of either charge-transfer or 
metal-centered chromophores. Whereas photoredox decom­
position of bridged binuclear ions has generally involved ox­
idation-reduction of ligands in addition to metal centers,5'6 

reaction in the present systems comprises net electron trans­
fer between metal centers. 

Our interest in these reactions derives principally from 
our conviction that study of intramolecular redox processes7 

offers the prospect of direct analysis for significant factors 
controlling the electron-transfer event, ambiguities associ­
ated with uncertainties in stabilities and structures of inter­
acting partners inherent in intermolecular redox reactions 
being minimized. Electron transfer in the cobalt(III)-cop-
per(I) binuclear ions at thermal energies is extremely slow 

Chem. Soc, 74, 4867 (1952). 
(47) B. Lythgoe, Proc. Chem. Soc, London, 141 (1959). 
(48) W. G. Dauben and G. J. Fonken, J. Am. Chem. Soc, 81, 4060 (1959). 
(49) H. H. Inhoffen and K. Irmscher, Fortschr. Chem. Org. Naturst., 17, 70 

(1959). 
(50) E. Havinga, R. J. de Kock, and M. P. Rappold, Tetrahedron, 11, 278 

(1960). 
(51) H. H. Inhoffen, Angew. Chem., 72, 875 (1960). 
(52) E. Havinga and J. L. M. A. Schlartmann, Tetrahedron, 16, 146 (1961). 
(53) K. E. Lewis and H. Steiner, J. Chem. Soc, 3080 (1964). 
(54) G. M. Sanders and E. Havinga, Reel. Trav. Chim. Pays-Bas, 83, 665 

(1964). 
(55) D. S. Glass, J. W. H. Watthey, and S. Winstein, Tetrahedron Lett., 377 

(1965). 
(56) E. N. Marvell, G. Caple, and B. Shatz, Tetrahedron Lett., 385 (1965). 
(57) E. Vogel, W. Grimme, and E. Dinne, Tetrahedron Lett., 391 (1965). 
(58) P. Courtot and R. Rumin, Tetrahedron Lett., 1091 (1968). 
(59) E. N. Marvell and J. Seubert, J. Am. Chem. Soc, 89, 3377 (1967). 
(60) R. Huisgen, A. Dahmen, and H. Huber, J. Am. Chem. Soc, 89, 7130 

(1967). 
(61) J. A. Berson, Ace Chem. Res., 1, 152 (1968); 5, 406 (1972); J. A. Ber-

son and L. Salem, J. Am. Chem. Soc, 94, 8917 (1972). 
(62) T. F. George and J. Ross, J. Chem. Phys., 55, 3851 (1971). 
(63) N. D. Epiotis, J. Am. Chem. Soc, 94, 1924, 1935, 1941, 1946 (1972); 

95, 1191, 1200, 1206, 1214(1973). 
(64) W. Schmidt, Tetrahedron Lett., 7, 581 (1972). 
(65) J. E. Baldwin, A. H. Andrist, and R. K. Pinschmidt, Jr., Ace Chem. Res., 

5,402(1972). 

(generally, / i / 2 5; 5 years) despite a favorable reaction free 
energy;4 we have therefore examined their reactivity in 
electronically excited states. Comparison of rate data for 
various bridging ligands has provided evidence favoring 
electron transfer attending charge-transfer excitation which 
is mediated by olefin ir-antibonding orbitals; the pathway is 
unique in that formal conjugation through the bridging Hg-
and is not required.s-9 Limitations imposed by our studies 
upon mechanistic alternatives for photoredox reactions ini­
tiated by excitation in the cobalt(III) ligand field region are 
also discussed. 

Experimental Section 

Reagents. Carboxy]atopentaamminecobalt(IIl) complexes were 
synthesized and characterized as previously described.4 The co-
balt(lll) complexes containing aminoalkene ligands were prepared 
by equilibrating dry dimethylformamide (DMF) solutions of Ro-
DMF perchlorate at ca. 60° for 1.5 hr with an excess of the amine; 
in these instances, the reaction was carried out under a blanket of 
nitrogen to minimize air oxidation of the organic ligand and molec­
ular sieve (4A) was added to maintain anhydrous conditions. The 
complexes were isolated as their perchlorate salts after concentra­
tion on a rotary evaporator and recrvstallized from hot dilute 
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Abstract: Photolytic oxidation-reduction reactions of (NHs)SCo111LCu1 bridged binuclear ions, where L = alkenoic acids or 
primary aminoalkenes, are described. Excitation of Cu(d) —* L(-n-*) charge transfer bands causes intramolecular electron 
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ogous intermolecular reactions. Results are rationalized in terms of electron transfer mediated by 7r-delocalized orbitals of 
the bridging ligands; for nonconjugated ligands, the pathway is provided by direct overlap of olefin 7r-antibonding orbitals 
with metal donor and acceptor orbitals. Irradiation in the wavelength region of the low-energy cobalt(III) ligand field bands 
(Li) also causes photoredox decomposition in the binuclear ions, 3>co(in S 1.3 X 1O-3. 
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